### Row 1, Extraction

- CBM
  - Water quality
    - Sodium bicarbonate
  - Injection current solution
    - Water quality impact on aquifer
  - Issue of assurance to surrounding landowners vis a vis water quality/availability
  - Ownership of produced/treated waters
- Water quality
  - Uranium—different from others
- Public perception
  - o Affecting quality of life
- Impacts of surface mining on aquifer
  - o Groundwater recharge
  - Mine drainage
  - o Reclamation/vegetation
- Produced water issues (near and long term issue) (2 votes)
  - Ownership
  - Water quality
    - Inconsistency from state to state—institutional, lega
    - Who owns it?
    - Increasing water scarcity
    - 25 year horizon?
- Aquifer impacts (3 votes)
  - o Data/aquifer characterization limited information
  - o Funding limitations for data acquisition/modeling
  - o Groundwater/surface water regulatory cost
    - Community perception/concern
- Water quality (4 votes)
  - Acid mine drainage
  - o Injection
  - Public perception
- Cumulative impact of many producers (1 vote)
  - o Quantity/quality
- Produced water
  - Not of value/beneficial
  - Need regulations that match water quality with end use (appropriate levels of treatment)
  - o Clarify ownership of produced water
  - o Need for legal/regulatory reform to promote maximum beneficial use

#### Row 2, Fuel Production

• Oil shale

- Uncertainty if development will occur
- o If development occurs—large water demand in arid region
- Coal gasification
  - o If development occurs—large water demand
- Clean coal
  - Water implications

#### Row 3, Electricity Production

- Hydro
  - Decommissioning of facilities
    - Instream values
  - o Climate change leads to amount of power and shift in timing of production
  - Large opportunity for distributed <5MW systems—licensing/permitting costs disproportionate to project cost (3 votes)
    - Transmission issues
    - Will grid accept?
  - o Regional trend toward reduction in hydro output
  - o Lack of water management systems (1 vote)
    - Data to optimize/maximize operation of system between major users
  - o Uncertainty of forecasting (2 votes)
  - Endangered species act (2 votes)
    - Effect on in-stream flows
  - Hydro water rights
    - Adjudicated
    - Shortages
  - o Aging infrastructure (4 votes)
    - Change in mission—\$ required for rehabilitation
      - Climate variability leads to increased cost of catastrophic failure
- Thermal
  - Siting of new facilities
    - Real water impacts
    - Public perception of water impacts
    - Lack of available information in understandable format hinders public debate
  - o Recover of cooling water (1 vote)
    - Funding and technology limitations

### Row 4, Renewables

- Bio-based (2 votes)
  - o Energy/water balance uncertainty
- Geothermal
  - Same as extraction
  - o Quantify water resource needs

# Row 5, Energy, Other

- Planning horizon currently too short (1 vote)
- Value of water (4 votes)
  - o Opportunity/true cost
  - Temporal nature
    - Peak pricing
  - o Spatial issue
- Water intensity of energy generation technologies
- Water quality and water transfers
  - NPDES impacts
- Lack of environmental accounting methods to allow comparative analysis between various technologies (7 votes)

•

# Urban/Ag/Ind

- Pricing (5 votes)
  - o Lack of price signals for all water users
  - o Regulatory bodies reluctance to adopt more "draconian" rates

### Conservation

- Not enough attention on conservation (3 votes)
- Value of conserved water (1 vote)
- Link to infrastructure
  - o Transmission velocity of sewage
- Lack of analytic methodology to recognize sequential savings (1 vote)
- Recognition of potential for energy savings WNTP
- Demand hardenings as a by product of lack of buffer (1 vote)

#### Water conservation-WaterStar

- Savings by design
- Water duty
- Full definition of the value of water saved
  - o Determine and quantify the value
  - o Better water efficiency metrics
- Incentives/subsidies for recycled water
  - o Ex: treated wastewater to ocean
- Severance tax on water lost to ocean

#### Row 6, Urban Uses

- Need for regional planning/coordination/implementation wrt land use/water (6 votes)
- Political pressure to accept short-term gain vs long-term cost (1 vote)
- Linkage between tertiary treatment and energy cost
- Water quality regulations become stiffer leading to increased energy intensity, often elsewhere (1 vote)
- Projected lack of physical supply—especially in areas of growth (1 vote)
- Water supply (3 votes)
  - o Growth management/increasing
  - o Energy cost for extraction/increasing
  - o Scarcity
  - o Limited legal/regulatory (1 vote)\
  - o Lack of sustainable viewpoint on aquifer management
  - o Lack of view of connection between ground and surface waters
  - o Jurisdictional aspect
    - Water treatment
  - Water utility fragmentation
- Transfer laws—lack of efficient system for water reallocation (to recognize new uses) (3 votes)
- Effect of climate change on urban demand—earlier spring/later fall (1 vote)

- High evap rates on reservoirs
- Storage dynamics—future energy demands
  - Snowpack
  - Aquifer
- Infrastructure—aging (2 votes)
  - Original design requirements (ag and power) not necessarily relevant today
- Post 9-11 infrastructure vulnerability are readily exposed
- System leakage (1 vote)

# Row 7, Agricultural Uses

- Energy costs associated with irrigation/water delivery leads to change in crop type
  - Surface and groundwater
- Increase in water costs leads to decrease in ag production leads to socio-economic disruption (2 votes)
- Understanding of water balance issues (1 vote)
  - o Diversion vs consumptive use
  - o How much water is available from increased efficiency?
- Value of water tied to ability to move water
- Substitution of capital for labor

•

Rows 8 and 9, Electricity and Energy Production Uses

#### Row 10, Recreational

- Continual/increased demand for recreational/environmental attribute recognition (1 vote)
- Effluent discharge to river vs potable supply
- Senior water rights vs in-stream flows

Row 11, Environmental

# Crosscutting Energy and Water Problems

- Value of water
  - Match water rights with hydrographs to allow hydrograph correlation to better define water rights
    - Reliability for specific water rights; rights index
- Long term value of water
  - Predictive model
- Need accessible database
- Need standard protocol for water rights index
- Quantified federal/tribal reserved rights
- Quantify regulatory (esp ESA, CWA)
- Real time—Australian example
- Environmental accounting methodologies
  - o Need better std DSS for full cost env acctg with risk analysis
    - Capture value
- Data needed
  - Water intensity of power production
  - Extraction
  - o Production use, etc.
  - Heat rate comparison
  - o Gal/kWh
  - o Gal/ton CO2
  - o Energy intensity of water uses (kWh/gal)
  - Quality impacts
  - Risk analysis

С

## **Priority Energy Problems**

- E1—Lack of environmental accounting methods to allow comparative analysis of various water and energy technologies
- E2—Water produced from energy extraction is not used beneficially

### Priority Energy/Water Problem

• E/W3—Current dependence on centralized energy/water/wastewater generation may be unsustainable and needs to be complemented by distributed generation

# **Priority Water Problems**

- W1—Lack of information or understanding of the value of water in terms of true cost, opportunity cost, and spatial and temporal variation in value
- W2—Lack of regional (watershed) planning, coordination, implementation and management across jurisdictions and ownerships to integrate land use and water supply
- W4—Failure to pay attention to water conservation (supply curves of water)

Priority Problem: E1— Lack of environmental accounting methods to allow comparative analysis of various water and energy technologies

- NEED: Better standardized methodologies for decision support systems to capture the full value of water
  - o Metrics/data needs
  - o Energy/water intensity
    - Gal/kWh
    - kWh/gal
    - gal/ton CO2
- SOLN: Develop standardized methodologies for decision support systems to capture full environmental accounting
  - Look at standard setting organizations such as NBII, ASTM, NCWR, ASHRAE, IEEE
  - o Include broad spectrum of stakeholders
  - o Steering committee to direct lab actions
  - Educational function/outreach to various college programs
- SOLN: Develop methods to include water intensity in energy planning/decision making and energy planning in water planning/decision making

Priority Problem: E2—Water produced from energy extraction is not used beneficially

- NEED: Regulations that match water quality with end use
- NEED: Legal/regulatory reform to promote maximum beneficial use
- NEED: Clarify ownership of produced waters
- NEED: Identify markets for degraded/produced water
  - Quality
  - Quantity
  - Duration

- Location
- NEED: Reduce treatment costs for treatment of produced water
  - Prefiltration cost reduction for R/O
  - o Improved membrane efficiency
- NEED: Pilot programs to test water reuse

Priority Problem: E/W3—Current dependence on centralized energy/water/wastewater generation may be unsustainable and needs to be complemented by distributed generation

- Aging infrastructure (embedded)/DG
- Asset management
- Condition of asset
- Current needs
- Project future need
  - o Compare alternatives included water
- Gap analysis
- Include water in DG
  - o Strategic value analysis on a regional basis
    - Refine methodology

Priority Problem: W1—Lack of information or understanding of the value of water in terms of true cost, opportunity cost, and spatial and temporal variation in value

- NEED: Reliability index for specific water rights
  - Need standardized protocol
- NEED: Predictive model for long-term value of water
- NEED: Quantified federal/tribal reserved rights
- NEED: Quantify regulatory (e.g., ESA, CWA)
- NEED: Real-time monitoring data
- SOLN: Develop standards/methodologies for water appraisal
  - o Resource economists, borrow from real estate appraisers
- SOLN: Develop standardized protocols for an index of reliability
  - o % of time water right is available based on seniority
  - o Availability (when) over time
  - Quantity over time
  - Opportunity cost
  - Hydrologists/water rights experts/biologists
  - Anyone who wants to buy water
- SOLN: Database development
  - What is required for index
  - Need real-time flow monitoring system

Priority Problem: W2—Lack of regional (watershed) planning, coordination, implementation and management across jurisdictions and ownerships to integrate land use and water supply

- NEED: Define scale of hydrographic neighborhoods
- NEED: Analytical tools that incorporate water/land
  - Model to integrate land and water
  - Tucson example:
    - Demand forecast
    - Need for uniform standards (WWT return flows, pop forecasts)
- NEED: Gauging systems
  - o Integrated measurement and monitoring system
- NEED: Data standards to inform water planning
- NEED: New technologies for measuring/monitoring
  - o Gauging station currently \$50k capital/\$15k operate
- NEED: Provide more pervasive monitoring
  - o USGS role
- NEED: Develop common data standards for integrated land, land use and water supply planning and management
  - New middleware
  - Data mapping
- NEED: Develop protocols for integrated land, water, wastewater

Priority Problem: W4—Failure to pay attention to water conservation (supply curves of water)

- NEED: Full definition of the value of water saved
  - o Determine and quantify value
  - o Better water efficiency metrics
- NEED: Incentives/subsidies for recycled water (Ex: treated water to ocean)
- NEED: Severance tax on water "lost" to ocean
- SOLN: Replace aging water meters
- SOLN: Develop incentives for water recycling
- SOLN: Demonstration projects
- SOLN: DOE/WERF/ASSARF/WateReuse/EPA/USGS actors